A General Error Estimate For Parabolic Variational Inequalities

نویسندگان

چکیده

Abstract The gradient discretisation method (GDM) is a generic framework designed recently, as in spatial space, to partial differential equations. This paper aims use the GDM establish first general error estimate for numerical approximations of parabolic obstacle problems. gives convergence rates several well-known conforming and non-conforming methods. Numerical experiments based on hybrid finite volume are provided verify theoretical results.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Error Estimate for the Truncation Method for the Solution of Parabolic Obstacle Variational Inequalities

A rate of convergence is obtained for a truncation method for the numerical solution of a class of parabolic variational inequalities.

متن کامل

A Posteriori Error Estimates for Parabolic Variational Inequalities

We study a posteriori error estimates in the energy norm for some parabolic obstacle problems discretized with a Euler implicit time scheme combined with a finite element spatial approximation. We discuss the reliability and efficiency of the error indicators, as well as their localization properties. Apart from the obstacle resolution, the error indicators vanish in the so-called full contact ...

متن کامل

L∞-error Estimate for a Noncoercive System of Elliptic Quasi-variational Inequalities: a Simple Proof

In this paper we provide a simple proof to derive L∞-error estimate for a noncoercive system of quasi-variational inequalities related to the management of energy production. The key idea is a discrete L∞-stability property owned by the corresponding coercive problem.

متن کامل

A POSTERIORI ERROR ANALYSIS FOR PARABOLIC VARIATIONAL INEQUALITIES ∗ Kyoung - Sook Moon

Motivated by the pricing of American options for baskets we consider a parabolic variational inequality in a bounded polyhedral domain Ω ⊂ R with a continuous piecewise smooth obstacle. We formulate a fully discrete method by using piecewise linear finite elements in space and the backward Euler method in time. We define an a posteriori error estimator and show that it gives an upper bound for ...

متن کامل

Nonlinear parabolic inequalities on a general convex

The paper deals with the existence and uniqueness of solutions of some non linear parabolic inequalities in the Orlicz-Sobolev spaces framework.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Computational methods in applied mathematics

سال: 2021

ISSN: ['1609-4840', '1609-9389']

DOI: https://doi.org/10.1515/cmam-2021-0050